Basic method to plot the output of a correspondence regression.
# S3 method for corregp
plot(x, axes = 1:2, y_btm = TRUE, y_ell = FALSE,
x_ell = FALSE, ysub = NULL, xsub = NULL, hlim = NULL, vlim = NULL,
expa_btm = 1, expa_top = 1, asp = 1, asp_btm = asp, asp_top = asp,
col_btm = "darkgrey", col_top = "red", cex_btm = par("cex"),
cex_top = cex_btm, font_btm = par("font"), font_top = font_btm,
fam_btm = par("family"), fam_top = fam_btm, col_ell = par("col"),
lwd_ell = par("lwd"), lty_ell = par("lty"), col_ori = par("col"),
lwd_ori = par("lwd"), lty_ori = 1, main = NULL, sub = NULL,
hlab = NULL, vlab = NULL, cl = 0.95, np = 100, add_ori = TRUE, ...)
The output of a call to corregp
(i.e. an object of class "corregp").
The axes to plot: a vector of two values. Defaults to the first two axes.
Logical specifying whether the Y levels should be plotted first ("at the bottom") and then be overlaid by the X levels. Defaults to TRUE
.
Logical specifying whether the confidence ellipses of the Y levels should be plotted. Defaults to FALSE
.
Logical specifying whether the confidence ellipses of the X levels should be plotted. Defaults to FALSE
.
Vector of indices to select a subset of the Y levels.
Vector of indices to select a subset of the X levels.
Vector of two values specifying the lower and upper limit between which to plot the horizontal axis.
Vector of two values specifying the lower and upper limit between which to plot the vertical axis.
Expansion factor for the bottom coordinates: a number to rescale the axes.
Expansion factor for the top coordinates: a number to rescale the axes.
The aspect ratio for the whole plot. See plot.window
.
The aspect ratio for the bottom coordinates. See plot.window
.
The aspect ratio for the top coordinates. See plot.window
.
Color of the bottom levels: either numeric
or see colors
. Defaults to "darkgrey"
.
Color of the top levels: either numeric
or see colors
. Defaults to "red"
.
Character expansion factor of the bottom levels: a number to specify the size of the text labels.
Character expansion factor of the top levels: a number to specify the size of the text labels.
Font of the bottom levels: 1
for plain, 2
for bold, 3
for italic, and 4
for bold italic. Defaults to 1
.
Font of the top levels: 1
for plain, 2
for bold, 3
for italic, and 4
for bold italic. Defaults to 1
.
Font family of the bottom levels: can be "serif"
, "sans"
, "mono"
or one of the Hershey
fonts.
Font family of the top levels: can be "serif"
, "sans"
, "mono"
or one of the Hershey
fonts.
Color of the confidence ellipses: either a number or see colors
.
Width of the confidence ellipses: a number to specify the line width.
Line type of the confidence ellipses: 0
or "blank"
, 1
or "solid"
, 2
or "dashed"
, 3
or "dotted"
,
4
or "dotdash"
, 5
or "longdash"
, 6
or "twodash"
. Defaults to 1
.
Color of the lines through the origin: either numeric
or see colors
.
Width of the lines through the origin: a number to specify the line width.
Line type of the lines through the origin: 0
or "blank"
, 1
or "solid"
, 2
or "dashed"
,
3
or "dotted"
, 4
or "dotdash"
, 5
or "longdash"
, 6
or "twodash"
. Defaults to 1
.
The main title of the plot.
The subtitle of the plot.
The title of the horizontal axis.
The title of the vertical axis.
The confidence level for the confidence ellipses. Defaults to 0.95
.
The number of points to represent the confidence ellipses. Defaults to 100
.
Logical specifying whether to add lines through the origin. Defaults to TRUE
.
Further arguments passed to or from other methods.
A plot window containing the output of a correspondence regression.
The plot of a correspondence regression is by definition a biplot
.
Gower, J., S. Lubbe and N. Le Roux (2011) Understanding biplots. Chichester: Wiley.
Greenacre, M. (2010) Biplots in practice. Bilbao: Fundacion BBVA.
corregp
, summary.corregp
, screeplot.corregp
, anova.corregp
, biplot
.
# NOT RUN {
data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
plot(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))
# }
Run the code above in your browser using DataLab