Learn R Programming

forward (version 1.0.3)

plot.fwdsco: Forward Search Transformation in Linear Regression

Description

This function plots the results of a forward search analysis for Box-Cox transformation of response in linear regression models.

Usage

"plot"(x, plot.Sco = TRUE, plot.Lik = FALSE, th.Sco = 2.58, plot.mle = TRUE, ylim = NULL, xlim = NULL, ...)

Arguments

x
a "fwdsco" object.
plot.Sco
logical, if TRUE plots the score test statistic at each step of the forward search for each lambda value.
plot.Lik
logical, if TRUE plots the likelihood value at each step of the forward search for each lambda value.
th.Sco
numerical, a value used to draw the confidence interval on the plot of the score test statistic.
plot.mle
logical, if TRUE adds a point at the maximum likelihood value for the transformation computed in the final step, i.e. on the full dataset.
ylim
a two component vector for the min and max of the y axis.
xlim
a two component vector for the min and max of the x axis.
...
further arguments passed to or from other methods.

References

Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First Edition. New York: Springer, Chapters 2-3.

See Also

fwdsco, fwdlm, fwdglm.

Examples

Run this code
## Not run: data(wool)
## Not run: mod <- fwdsco(y ~ x1 + x2 + x3, data = wool)
## Not run: plot(mod, plot.mle=FALSE)
## Not run: plot(mod, plot.Sco=FALSE, plot.Lik=TRUE)

Run the code above in your browser using DataLab