Last chance! 50% off unlimited learning
Sale ends in
gg_rfsrc
object.gg_rfsrc
object, the
randomForestSRC::rfsrc
prediction, using the OOB prediction from the forest.## S3 method for class 'gg_rfsrc':
plot(x, ...)
gg_rfsrc
object created from a randomForestSRC::rfsrc
objectgg_rfsrc
.ggplot
objectIshwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
gg_rfsrc
randomForestSRC::rfsrc
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
# iris_rf <- rfsrc(Species ~ ., data = iris)
data(iris_rf, package="ggRandomForests")
gg_dta<- gg_rfsrc(iris_rf)
plot.gg_rfsrc(gg_dta)
## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
# airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
data(airq_rf, package="ggRandomForests")
gg_dta<- gg_rfsrc(airq_rf)
plot.gg_rfsrc(gg_dta)
## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
## veteran data
## randomized trial of two treatment regimens for lung cancer
# data(veteran, package = "randomForestSRC")
# veteran_rf <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
data(veteran_rf, package = "ggRandomForests")
gg_dta <- gg_rfsrc(veteran_rf)
plot(gg_dta)
Run the code above in your browser using DataLab