gg_vimp
object, extracted variable importance of a
rfsrc
objectgg_vimp
object, extracted variable importance of a
rfsrc
object
"plot"(x, relative, lbls, ...)
ggplot
object
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
gg_vimp
## Not run:
# ## ------------------------------------------------------------
# ## classification example
# ## ------------------------------------------------------------
# ## -------- iris data
# # rfsrc_iris <- rfsrc(Species ~ ., data = iris)
# data(rfsrc_iris, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_iris)
# plot(gg_dta)
#
# ## ------------------------------------------------------------
# ## regression example
# ## ------------------------------------------------------------
# ## -------- air quality data
# # rfsrc_airq <- rfsrc(Ozone ~ ., airquality)
# data(rfsrc_airq, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_airq)
# plot(gg_dta)
#
# ## -------- Boston data
# data(rfsrc_Boston, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_Boston)
# plot(gg_dta)
#
# ## -------- mtcars data
# data(rfsrc_mtcars, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_mtcars)
# plot(gg_dta)
#
# ## ------------------------------------------------------------
# ## survival example
# ## ------------------------------------------------------------
# ## -------- veteran data
# data(rfsrc_veteran, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_veteran)
# plot(gg_dta)
#
# ## -------- pbc data
# data(rfsrc_pbc, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_pbc)
# plot(gg_dta)
#
# ## End(Not run)
Run the code above in your browser using DataLab