Learn R Programming

ks (version 1.10.4)

plot.kde.loctest: Plot for kernel local significant difference regions

Description

Plot for kernel local significant difference regions for 1- to 3-dimensional data.

Usage

"plot"(x, ...)

Arguments

x
an object of class kde.loctest (output from kde.local.test)
...
other graphics parameters:
lcol
colour for KDE curve (1-d)

col
vector of 2 colours. Default is c("purple", "darkgreen"). First colour: sample 1>sample 2, second colour: sample 1

add
flag to add to current plot. Default is FALSE.

rugsize
height of rug-like plot (1-d)

add.legend
flag to add legend. Default is FALSE (1-d, 2-d).

pos.legend
position label for legend (1-d, 2-d)

add.contour
flag to add contour lines. Default is FALSE (2-d).

and those used in plot.kde

Value

Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to RGL window.

Details

For kde.loctest objects, the function headers are
   ## univariate
   plot(x, lcol, col, add=FALSE, xlab="x", ylab, rugsize, add.legend=TRUE, 
     pos.legend="topright", ...)
   
   ## bivariate
   plot(x, col, add=FALSE, xlab="x", ylab="y", add.contour=FALSE, 
     add.legend=TRUE, pos.legend="topright", ...)

## trivariate plot(x, col, add=FALSE, xlab="x", ylab="y", zlab="z", box=TRUE, axes=TRUE, alphavec=c(0.5, 0.5), ...)

See Also

kde.local.test

Examples

Run this code
library(MASS)
data(crabs)
x1 <- crabs[crabs$sp=="B", c(4,6)]
x2 <- crabs[crabs$sp=="O", c(4,6)]
loct <- kde.local.test(x1=x1, x2=x2)
plot(loct)

Run the code above in your browser using DataLab