Learn R Programming

iqLearn (version 1.5)

plot.learnIQ1cm: Residual plots for the contrast mean model

Description

Displays common residual plots that can be used to diagnose model fit for the contrast function mean model.

Usage

# S3 method for learnIQ1cm
plot(x, ...)

Arguments

x

object of type learnIQ1cm

...

additional arguments to be passed to plot()

Value

None.

References

Linn, K. A., Laber, E. B., Stefanski, L. A. (2015) "iqLearn: Interactive Q-Learning in R", Journal of Statistical Software, 64(1), 1--25.

Laber, E. B., Linn, K. A., and Stefanski, L. A. (2014) "Interactive model building for Q-learning", Biometrika, 101(4), 831-847.

See Also

learnIQ1cm

Examples

Run this code
# NOT RUN {
## load in two-stage BMI data
data (bmiData)
bmiData$A1[which (bmiData$A1=="MR")] = 1
bmiData$A1[which (bmiData$A1=="CD")] = -1
bmiData$A2[which (bmiData$A2=="MR")] = 1
bmiData$A2[which (bmiData$A2=="CD")] = -1
bmiData$A1 = as.numeric (bmiData$A1)
bmiData$A2 = as.numeric (bmiData$A2)
s1vars = bmiData[,1:4]
s2vars = bmiData[,c (1, 3, 5)]
a1 = bmiData[,7]
a2 = bmiData[,8]
## define response y to be the negative 12 month change in BMI from
## baseline 
y = -(bmiData[,6] - bmiData[,4])/bmiData[,4]
s2ints = c (2, 3)
## second-stage regression
fitIQ2 = learnIQ2 (y ~ gender + parent_BMI + month4_BMI +
  A2*(parent_BMI + month4_BMI), data=bmiData, "A2", c("parent_BMI",
                                  "month4_BMI"))
## model conditional mean of contrast function
fitIQ1cm = learnIQ1cm (~ gender + race + parent_BMI + baseline_BMI +
  A1*(gender + parent_BMI + baseline_BMI), data=bmiData, "A1", c
  ("gender", "parent_BMI", "baseline_BMI"), fitIQ2)
plot (fitIQ1cm)
# }

Run the code above in your browser using DataLab