rl(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, ...)
"rl"(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, ...)
"rl"(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL, ...)
"rl"(object, M = 1000, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL, ...)
"plot"(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 , cicol = 0, polycol = 15, smooth = FALSE, sameAxes=TRUE, type="median", ... )
"plot"(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 , cicol = 0, polycol = 15, smooth = FALSE, sameAxes=TRUE, type="median", ... )
"plot"(x, xlab, ylab, main, pch= 1, ptcol =2 , cex=.75, linecol = 4 , cicol = 0, polycol = 15, smooth = FALSE, sameAxes=TRUE, type="median", ... )
"print"(x, digits=3, ...)
"print"(x, digits=3, ...)
"print"(x, digits=3, ...)
"summary"(object, digits=3, ...)
"summary"(object, digits=3, ...)
"summary"(object, digits=3, ...)
evmOpt
, evmSim
or evmBoot
.M = 1000
.se.fit = FALSE
.ci.fit = FALSE
. For objects of class
evmOpt
, if set to TRUE
then the confidence interval is a simple symmetric confidence interval
based on the estimated approximate standard error. For the
evmSim
and evmBoot
methods, the confidence
interval represents quantiles of the simulated distribution of the
parameters.ci.fit = TRUE
, a 100(1 - alpha)% confidence interval is returned.
Defaults to alpha = 0.050
.
unique. = TRUE
, predictions for only the unique values of
the linear predictors are returned, rather than for every row of the original dataframe or of
newdata
if this latter is specified. Defaults to unique. = TRUE
.
evmSim
and evmBoot
methods, if all = TRUE
, the
predictions are returned for every simulated parameter vector. Otherwise,
only a summary of the posterior/bootstrap distribution is returned.
Defaults to all = FALSE
.
evmSim
and evmBoot
methods, a summary function
can be passed in. If sumfun = FALSE
, the default, the
summary function used returns the estimated mean and median, and quantiles
implied by alpha
.
rl.evmSim
or rl.evmBoot
, specifies whether
to use the sample mean (type="mean"
) or median
(type="median"
) estimate of the return levels.In models fit by the evm
family of functions with
family=gpd
, only a fraction of the data is
actually included in the model; the fitted GPD is a conditional model,
conditioning on the threshold having been exceeded. This consideration
is taken into account by rl
which calculates unconditional
return levels from the entire distribution of observations above and
below the GPD fitting threshold.
mod <- evm(rain, qu=.8) # daily rainfall observations
rl(mod, M=100*365) # 100-year return level
Run the code above in your browser using DataLab