Last chance! 50% off unlimited learning
Sale ends in
ideal
object.plot1d(x, d=1, conf.int=0.95, start=rownames(x$x)[1],
showAllNames = FALSE, ...)
ideal
x
was fit with d
> 1link{ideal}
objects fit with d=1
dimension, the size of the confidence interval to plot around the
estimated posterior mean for each legislator's ideal pointlogical
, if TRUE
, the
vertical axis will the names of all legislators. Default is
FALSE
to reduce clutter on typical-sized graph.plot.ideal()
produces a plot of the posterior mean of the ideal point estimations for each
legislator with a confidence interval. If there are more
than 30 legislators, only 30 points on this graph will be labelled.
If party information is
available in the rollcall
object contained in the ideal
object, legislators from different
parties are plotted in different colors.ideal
, plot.ideal
, plot2d
data(s109)
id1 <- ideal(s109,
d=1,
meanzero=TRUE,
store.item=TRUE,
maxiter=1000,
burnin=100,
thin=10)
plot(id1) ## same as plot1d(id1) for d=1
plot(id1,showAllNames=TRUE)
## long run, too long for examples
idLong <- ideal(s109,
d=1,
meanzero=TRUE,
store.item=TRUE,
maxiter=251e3,
burnin=1000,
thin=1e3)
pdf(file="s109.pdf",
paper="special",
height=16,width=8.5) ## big graphing area
plot(idLong,showAllNames=TRUE)
dev.off()
Run the code above in your browser using DataLab