measure across all iterations
of the resampling strategy, faceted by the task.id.
plotBMRBoxplots(bmr, measure = NULL, style = "box", order.lrns = NULL, order.tsks = NULL, pretty.names = TRUE)BenchmarkResult]
Benchmark result.Measure]
Performance measure.
Default is the first measure used in the benchmark experiment.character(1)]
Type of plot, can be box for a boxplot or violin for a violin plot.
Default is box.character(n.learners)]
Character vector with learner.ids in new order.character(n.tasks)]
Character vector with task.ids in new order.logical(1)]
Whether to use the Measure name instead of the id in the plot.
Default is TRUE.BenchmarkResult,
benchmark,
convertBMRToRankMatrix,
friedmanPostHocTestBMR,
friedmanTestBMR,
generateCritDifferencesData,
getBMRAggrPerformances,
getBMRFeatSelResults,
getBMRFilteredFeatures,
getBMRLearnerIds,
getBMRLearnerShortNames,
getBMRLearners,
getBMRMeasureIds,
getBMRMeasures, getBMRModels,
getBMRPerformances,
getBMRPredictions,
getBMRTaskIds,
getBMRTuneResults,
plotBMRRanksAsBarChart,
plotBMRSummary,
plotCritDifferencesOther plot: plotBMRRanksAsBarChart,
plotBMRSummary,
plotCalibration,
plotCritDifferences,
plotFilterValuesGGVIS,
plotFilterValues,
plotLearningCurveGGVIS,
plotLearningCurve,
plotPartialPredictionGGVIS,
plotPartialPrediction,
plotROCCurves,
plotThreshVsPerfGGVIS,
plotThreshVsPerf