
Last chance! 50% off unlimited learning
Sale ends in
extractProb
)
and creates a lattice plot.
If the call to extractProb
included test data, these data are shown, but
if unknowns were also included, these are not plottedplotClassProbs(object,
plotType = "histogram",
useObjects = FALSE,
...)
extractProb
. There
should be columns for each level of the class factor and columns named obs
, pred
, model
(e.g. "rpart"histogram
or densityplot
data(mdrr)
set.seed(90)
inTrain <- createDataPartition(mdrrClass, p = .5)[[1]]
trainData <- mdrrDescr[inTrain,1:20]
testData <- mdrrDescr[-inTrain,1:20]
trainY <- mdrrClass[inTrain]
testY <- mdrrClass[-inTrain]
ctrl <- trainControl(method = "cv")
nbFit1 <- train(trainData, trainY, "nb",
trControl = ctrl,
tuneGrid = data.frame(.usekernel = TRUE))
nbFit2 <- train(trainData, trainY, "nb",
trControl = ctrl,
tuneGrid = data.frame(.usekernel = FALSE))
models <- list(para = nbFit2,
nonpara = nbFit1)
predProbs <- extractProb(models,
testX = testData,
testY = testY)
plotClassProbs(predProbs,
useObjects = TRUE)
plotClassProbs(predProbs,
subset = object == "para" & dataType == "Test")
plotClassProbs(predProbs,
useObjects = TRUE,
plotType = "densityplot",
auto.key = list(columns = 2))
Run the code above in your browser using DataLab