Learn R Programming

eRm (version 0.9-4)

LRtest: Computation of Andersen's LR-test.

Description

This LR-test is based on subject subgroup splitting.

Usage

## S3 method for class 'Rm':
LRtest(object, splitcr = "median", se = FALSE)
## S3 method for class 'LR':
plotGOF(x, beta.subset = "all", xlab = "Beta Group 1",
ylab = "Beta Group 2", ylim = c(-3, 3), xlim = c(-3, 3), type = "p", ...)
## S3 method for class 'LR':
print(x,...)
## S3 method for class 'LR':
summary(object,...)

Arguments

object
Object of class Rm.
splitcr
Split criterion for subject raw score splitting. all.r corresponds to a full raw score split, median uses the median as split criterion, mean performs a mean-split. Optionally splitcr can also be a
se
If TRUE standard errors for beta's are computed.
x
Object of class LR for visualizing the fit of single items.
beta.subset
If "all", all items are plotted. Otherwise numeric subset vector can be specified.
xlab
Label on x-axis.
ylab
Label on y-axis.
xlim
Limits on x-axis.
ylim
Limits on y-axis.
type
Plotting type.
...
Additional graphical parameters.

Value

  • LRtest returns an object of class LR containing:
  • LRLR-value.
  • dfDegrees of freedom of the test statistic.
  • ChisqChi-square value with corresponding df.
  • pvalueP-value of the test.
  • likgroupLog-likelihood values for the subgroups
  • betalistList of beta parameters for the subgroups.
  • selistList of standard errors of beta's.
  • etalistList of eta parameters for the subgroups.

Details

If the data set contains missing values and mean or median is specified as splitcriterion, means or medians are calculated for each missing value subgroup and consequently used for raw score splitting.

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer. Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20. Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.

See Also

Waldtest

Examples

Run this code
# LR-test on dichotomous Rasch model with user-defined split
splitvec <- sample(1:3, 100, replace = TRUE)
data(raschdat1)
res <- RM(raschdat1)
lrres <- LRtest(res, splitcr = splitvec)
lrres
summary(lrres)
plotGOF(lrres)

Run the code above in your browser using DataLab