Last chance! 50% off unlimited learning
Sale ends in
Plots a ROC curve from predictions.
plotROCCurves(obj, measures, diagonal = TRUE, pretty.names = TRUE,
facet.learner = FALSE)
(ThreshVsPerfData) Result of generateThreshVsPerfData.
([list(2)` of Measure) Default is the first 2 measures passed to generateThreshVsPerfData.
(logical(1)
)
Whether to plot a dashed diagonal line.
Default is TRUE
.
(logical(1)
)
Whether to use the Measure name instead of the id in the plot.
Default is TRUE
.
(logical(1)
)
Weather to use facetting or different colors to compare multiple learners.
Default is FALSE
.
ggplot2 plot object.
Other plot: createSpatialResamplingPlots
,
plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotBMRSummary
,
plotCalibration
,
plotCritDifferences
,
plotLearningCurve
,
plotPartialDependence
,
plotResiduals
,
plotThreshVsPerf
Other thresh_vs_perf: generateThreshVsPerfData
,
plotThreshVsPerf
# NOT RUN {
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
roc = generateThreshVsPerfData(pred, list(fpr, tpr))
plotROCCurves(roc)
r = bootstrapB632plus(lrn, sonar.task, iters = 3)
roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_r)
r2 = crossval(lrn, sonar.task, iters = 3)
roc_l = generateThreshVsPerfData(list(boot = r, cv = r2), list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_l)
# }
Run the code above in your browser using DataLab