# NOT RUN {
## variable representation for objects of class 'rcc'
# ----------------------------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
plotVar(nutri.res) #(default)
# }
# NOT RUN {
plotVar(nutri.res, comp = c(1,3), cutoff = 0.5)
# }
# NOT RUN {
## variable representation for objects of class 'pls' or 'spls'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50), 
                      keepY = c(10, 10, 10))
	
plotVar(toxicity.spls, cex = c(1,0.8))
## variable representation for objects of class 'splsda'
# ----------------------------------------------------
# }
# NOT RUN {
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])
ncomp <- 2
keepX <- rep(20, ncomp)
splsda.liver <- splsda(X, Y, ncomp = ncomp, keepX = keepX)
plotVar(splsda.liver)
# }
# NOT RUN {
## variable representation for objects of class 'sgcca' (or 'rgcca')
# ----------------------------------------------------
## see example in ??wrapper.sgcca
data(nutrimouse)
# need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
# set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
# set up the design matrix:
# with this design, gene expression and lipids are connected to the diet factor
# design = matrix(c(0,0,1,
#                   0,0,1,
#                   1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
# with this design, gene expression and lipids are connected to the diet factor
# and gene expression and lipids are also connected
design = matrix(c(0,1,1,
                  1,0,1,
                  1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(X = data, design = design, penalty = c(.3,.3, 1),
                                  ncomp = 2,
                                  scheme = "centroid")
wrap.result.sgcca
#variables selected on component 1 for each block
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$'lipid'$name
#variables selected on component 2 for each block
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'gene'$name
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$'lipid'$name
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(1,1),
title = c('Variables selected on component 1 only'))
# }
# NOT RUN {
    plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), comp.select = c(2,2),
    title = c('Variables selected on component 2 only'))
    # -> this one shows the variables selected on both components
    plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2),
    title = c('Variables selected on components 1 and 2'))
# }
# NOT RUN {
## variable representation for objects of class 'rgcca'
# ----------------------------------------------------
# }
# NOT RUN {
data(nutrimouse)
# need to unmap Y for an unsupervised analysis, where Y is included as a data block in data
Y = unmap(nutrimouse$diet)
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y = Y)
# with this design, all blocks are connected
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, 
                byrow = TRUE, dimnames = list(names(data), names(data)))
nutrimouse.rgcca <- wrapper.rgcca(X = data,
                                         design = design,
                                         tau = "optimal",
                                         ncomp = 2,
                                         scheme = "centroid")
plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2), cex = c(1.5, 1.5))
    plotVar(nutrimouse.rgcca, comp = c(1,2), block = c(1,2))
    # set up the data as list
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid, Y =Y)
    # with this design, gene expression and lipids are connected to the diet factor
    # design = matrix(c(0,0,1,
    #                   0,0,1,
    #                   1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
    # with this design, gene expression and lipids are connected to the diet factor
    # and gene expression and lipids are also connected
    design = matrix(c(0,1,1,
                      1,0,1,
                      1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
    #note: the tau parameter is the regularization parameter
    wrap.result.rgcca = wrapper.rgcca(X = data, design = design, tau = c(1, 1, 0),
                                      ncomp = 2,
                                      scheme = "centroid")
    #wrap.result.rgcca
    plotVar(wrap.result.rgcca, comp = c(1,2), block = c(1,2))
# }
Run the code above in your browser using DataLab