# NOT RUN {
# Generate data for the example
carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA
# Visualization of all numerical variables
plot_outlier(carseats)
# Select the variable to diagnose
plot_outlier(carseats, Sales, Price)
plot_outlier(carseats, -Sales, -Price)
plot_outlier(carseats, "Sales", "Price")
plot_outlier(carseats, 6)
# Using the col argument
plot_outlier(carseats, Sales, col = "gray")
# Using pipes ---------------------------------
library(dplyr)
# Visualization of all numerical variables
carseats %>%
plot_outlier()
# Positive values select variables
carseats %>%
plot_outlier(Sales, Price)
# Negative values to drop variables
carseats %>%
plot_outlier(-Sales, -Price)
# Positions values select variables
carseats %>%
plot_outlier(6)
# Positions values select variables
carseats %>%
plot_outlier(-1, -5)
# Using pipes & dplyr -------------------------
# Visualization of numerical variables with a ratio of
# outliers greater than 1%
carseats %>%
plot_outlier(carseats %>%
diagnose_outlier() %>%
filter(outliers_ratio > 1) %>%
select(variables) %>%
pull())
# }
Run the code above in your browser using DataLab