# Using a data set of the Aphanomyces eutieches root rot pathogen.
data(Aeut)
adist <- diss.dist(Aeut, percent = TRUE)
amsn <- poppr.msn(Aeut, adist, showplot = FALSE)
# Default
library("igraph") # To get all the layouts.
set.seed(500)
plot_poppr_msn(Aeut, amsn, gadj = 15)
## Not run:
#
# # Different layouts (from igraph) can be used by supplying the function name.
# set.seed(500)
# plot_poppr_msn(Aeut, amsn, gadj = 15, layfun = layout_with_kk)
#
# # Removing link between populations (cutoff = 0.2) and labelling no individuals
# set.seed(500)
# plot_poppr_msn(Aeut, amsn, inds = "none", gadj = 15, beforecut = TRUE, cutoff = 0.2)
#
# # Labelling individual #57 because it is an MLG that crosses populations
# # Showing clusters of MLGS with at most 5% variation
# # Notice that the Mt. Vernon population appears to be more clonal
# set.seed(50)
# plot_poppr_msn(Aeut, amsn, gadj = 15, cutoff = 0.05, inds = "057")
#
#
# data(partial_clone)
# pcmsn <- bruvo.msn(partial_clone, replen = rep(1, 10))
#
# # You can plot using a color palette or a vector of named colors
# # Here's a way to define the colors beforehand
# pc_colors <- nPop(partial_clone) %>%
# RColorBrewer::brewer.pal("Set2") %>%
# setNames(popNames(partial_clone))
#
# pc_colors
#
# # Labelling the samples contained in multilocus genotype 9
# set.seed(999)
# plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = 9)
#
# # Doing the same thing, but using one of the sample names as input.
# set.seed(999)
# plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = "sim 20")
#
# # Note that this is case sensitive. Nothing is labeled.
# set.seed(999)
# plot_poppr_msn(partial_clone, pcmsn, palette = pc_colors, inds = "Sim 20")
#
# # Something pretty
# data(microbov)
# mdist <- diss.dist(microbov, percent = TRUE)
# micmsn <- poppr.msn(microbov, mdist, showplot = FALSE)
#
# plot_poppr_msn(microbov, micmsn, palette = "terrain.colors", inds = "n",
# quantiles = FALSE)
# plot_poppr_msn(microbov, micmsn, palette = "terrain.colors", inds = "n",
# cutoff = 0.3, quantiles = FALSE)
#
# ### Utilizing vectors for palettes
#
# data(Pram)
# Pram_sub <- popsub(Pram, blacklist = c("Nursery_CA", "Nursery_OR"))
#
# # Creating the network for the forest
# min_span_net_sub <- bruvo.msn(Pram_sub, replen = other(Pram)$REPLEN,
# add = TRUE, loss = TRUE, showplot = FALSE,
# include.ties = TRUE)
#
# # Creating the network with nurseries
# min_span_net <- bruvo.msn(Pram, replen = other(Pram)$REPLEN,
# add = TRUE, loss = TRUE, showplot = FALSE,
# include.ties = TRUE)
#
# # Only forest genotypes
# set.seed(70)
# plot_poppr_msn(Pram,
# min_span_net_sub,
# inds = "ALL",
# mlg = TRUE,
# gadj = 9,
# nodebase = 1.75,
# palette = other(Pram)$comparePal,
# cutoff = NULL,
# quantiles = FALSE,
# beforecut = TRUE)
#
# # With Nurseries
# set.seed(70)
# plot_poppr_msn(Pram,
# min_span_net,
# inds = "ALL",
# mlg = TRUE,
# gadj = 9,
# nodebase = 1.75,
# palette = other(Pram)$comparePal,
# cutoff = NULL,
# quantiles = FALSE,
# beforecut = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab