
Last chance! 50% off unlimited learning
Sale ends in
Visualize output of prcomp.
plot_prcomp(data, variance_cap = 0.8, maxcat = 50L,
prcomp_args = list(scale. = TRUE), geom_label_args = list(),
title = NULL, ggtheme = theme_gray(), theme_config = list(),
nrow = 3L, ncol = 3L, parallel = FALSE)
input data
maximum cumulative explained variance allowed for all principal components. Default is 80%.
maximum categories allowed for each discrete feature. The default is 50.
a list of other arguments to prcomp
a list of other arguments to geom_label
plot title starting from page 2.
complete ggplot2 themes. The default is theme_gray.
a list of configurations to be passed to theme.
number of rows per page
number of columns per page
enable parallel? Default is FALSE
.
invisibly return the named list of ggplot objects
When cumulative explained variance exceeds variance_cap
, remaining principal components will be ignored. Set variance_cap
to 1 for all principal components.
Discrete features containing more categories than maxcat
specifies will be ignored.
# NOT RUN {
plot_prcomp(na.omit(airquality), nrow = 2L, ncol = 2L)
data("diamonds", package = "ggplot2")
plot_prcomp(diamonds, maxcat = 7L)
# }
Run the code above in your browser using DataLab