# NOT RUN {
# Logistic Distribution: mean = 0, variance = 1
seed = 1234
# Simulate "external" data set
set.seed(seed)
ext_y <- rlogis(10000)
# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))
# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,
skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)
# Plot pdfs of simulated variable (invalid) and external data
plot_sim_pdf_ext(sim_y = Logvar1$continuous_variable,
title = "Invalid Logistic Simulated PDF", ext_y = ext_y)
# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,
skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = 1234)
# Plot pdfs of simulated variable (valid) and external data
plot_sim_pdf_ext(sim_y = Logvar2$continuous_variable,
title = "Valid Logistic Simulated PDF", ext_y = ext_y)
# Simulate 2 Poisson distributions (means = 10, 15) and correlation 0.3
# using Method 1
Pvars <- rcorrvar(k_pois = 2, lam = c(10, 15),
rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)
# Simulate "external" data set
set.seed(seed)
ext_y <- rpois(10000, 10)
# Plot pdfs of 1st simulated variable and external data
plot_sim_pdf_ext(sim_y = Pvars$Poisson_variable[, 1], ext_y = ext_y)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab