data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
plsRglm(yCornell,XCornell,3)$uscores
plsRglm(yCornell,XCornell,3)$pp
plsRglm(yCornell,XCornell,3)$Coeffs
plsRglm(yCornell,XCornell,10)$InfCrit
plsRglm(yCornell,XCornell,10,modele="pls-glm-gaussian")$InfCrit
rm(list=c("XCornell","yCornell"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
plsRglm(log(ypine),Xpine,1)$Std.Coeffs
plsRglm(log(ypine),Xpine,1)$Coeffs
plsRglm(log(ypine),Xpine,4)$Std.Coeffs
plsRglm(log(ypine),Xpine,4)$Coeffs
plsRglm(log(ypine),Xpine,4)$PredictY[1,]
plsRglm(log(ypine),Xpine,4,dataPredictY=Xpine[1,])$PredictY[1,]
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
str(plsRglm(log(ypine),XpineNAX21,2))
plsRglm(log(ypine),XpineNAX21,4)$Std.Coeffs
plsRglm(log(ypine),XpineNAX21,4)$YChapeau[1,]
plsRglm(log(ypine),Xpine,4)$YChapeau[1,]
plsRglm(log(ypine),XpineNAX21,4)$CoeffC
plsRglm(log(ypine),XpineNAX21,4,EstimXNA=TRUE)$XChapeau
plsRglm(log(ypine),XpineNAX21,4,EstimXNA=TRUE)$XChapeauNA
# compare pls-glm-gaussian with classic plsR
cbind(plsRglm(log(ypine),Xpine,4,modele="pls")$Std.Coeffs,plsRglm(log(ypine),Xpine,4,modele="pls-glm-gaussian")$Std.Coeffs)
# without missing data
cbind(log(ypine),plsRglm(log(ypine),Xpine,4,modele="pls")$YChapeau,plsRglm(log(ypine),Xpine,4,modele="pls-glm-gaussian")$YChapeau)
cbind(log(ypine),plsRglm(log(ypine),XpineNAX21,4,modele="pls")$YChapeau,plsRglm(log(ypine),XpineNAX21,4,modele="pls-glm-gaussian")$YChapeau)
# with missing data
cbind((log(ypine)),plsRglm(log(ypine),XpineNAX21,4,modele="pls")$YChapeau,plsRglm(log(ypine),XpineNAX21,4,modele="pls-glm-gaussian")$YChapeau)
cbind((log(ypine)),plsRglm(log(ypine),XpineNAX21,4,modele="pls")$ValsPredictY,plsRglm(log(ypine),XpineNAX21,4,modele="pls-glm-gaussian")$ValsPredictY)
rm(list=c("Xpine","ypine"))
data(fowlkes)
Xfowlkes <- fowlkes[,2:13]
yfowlkes <- fowlkes[,1]
modpls <- plsRglm(yfowlkes,Xfowlkes,4,modele="pls-glm-logistic",pvals.expli=TRUE)
modpls$pvalstep
rm(list=c("Xfowlkes","yfowlkes","modpls"))
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls",MClassed=TRUE)$InfCrit
modpls <- plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls-glm-logistic",MClassed=TRUE,pvals.expli=TRUE)
modpls$InfCrit
modpls$valpvalstep
modpls$Coeffsmodel_vals
plot(plsRglm(yaze_compl,Xaze_compl,4,modele="pls-glm-logistic")$FinalModel)
plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72),],4,modele="pls-glm-logistic",pvals.expli=TRUE)$pvalstep
plot(plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72),],4,modele="pls-glm-logistic",pvals.expli=TRUE)$FinalModel)
rm(list=c("Xaze_compl","yaze_compl","modpls"))
data(bordeaux)
Xbordeaux<-bordeaux[,1:4]
ybordeaux<-factor(bordeaux$Quality,ordered=TRUE)
modpls <- plsRglm(ybordeaux,Xbordeaux,10,modele="pls-glm-polr")
modpls$Coeffsmodel_vals
modpls$InfCrit
XbordeauxNA<-Xbordeaux
XbordeauxNA[1,1] <- NA
modplsNA <- plsRglm(ybordeaux,XbordeauxNA,10,modele="pls-glm-polr")
modplsNA$Coeffsmodel_vals
modplsNA$InfCrit
rm(list=c("Xbordeaux","XbordeauxNA","ybordeaux","modplsNA"))
#install.packages(chemometrics)
library(chemometrics)
data(hyptis)
yhyptis <- factor(hyptis$Group,ordered=TRUE)
Xhyptis <- as.data.frame(hyptis[,c(1:6)])
options(contrasts = c("contr.treatment", "contr.poly"))
modpls2 <- plsRglm(yhyptis,Xhyptis,6,modele="pls-glm-polr")
modpls2$Coeffsmodel_vals
modpls2$InfCrit
modpls2$Coeffs
modpls2$std.coeffs
table(yhyptis,predict(modpls2$FinalModel,type="class"))
rm(list=c("yhyptis","Xhyptis","modpls2"))
dimX <- 6
Astar <- 4
dataAstar4 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar4)[,1]
Xsimbin1 <- dicho(dataAstar4)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar4","ysimbin1","Xsimbin1","modplsglm"))
dimX <- 24
Astar <- 2
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar2)[,1]
Xsimbin1 <- dicho(dataAstar2)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar2","ysimbin1","Xsimbin1","modplsglm"))
dimX <- 24
Astar <- 3
dataAstar3 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar3)[,1]
Xsimbin1 <- dicho(dataAstar3)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar3","ysimbin1","Xsimbin1","modplsglm"))
dimX <- 24
Astar <- 4
dataAstar4 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar4)[,1]
Xsimbin1 <- dicho(dataAstar4)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar4","ysimbin1","Xsimbin1","modplsglm"))
dimX <- 24
Astar <- 5
dataAstar5 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar5)[,1]
Xsimbin1 <- dicho(dataAstar5)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar5","ysimbin1","Xsimbin1","modplsglm"))
dimX <- 24
Astar <- 6
dataAstar6 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar6)[,1]
Xsimbin1 <- dicho(dataAstar6)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
modplsglm$computed_nt
modplsglm$InfCrit
rm(list=c("dimX","Astar","dataAstar6","ysimbin1","Xsimbin1","modplsglm"))
Run the code above in your browser using DataLab