
Family function for a generalized linear model fitted to Poisson responses.
poissonff(link = "loge", imu = NULL,
imethod = 1, parallel = FALSE, zero = NULL, bred = FALSE,
earg.link = FALSE, type.fitted = c("mean", "quantiles"),
percentiles = c(25, 50, 75))
Link function applied to the mean or means.
See Links
for more choices
and information.
A logical or formula. Used only if the response is a matrix.
See CommonVGAMffArguments
for more information.
Can be an integer-valued vector specifying which linear/additive
predictors
are modelled as intercepts only. The values must be from the set
{1,2,…,CommonVGAMffArguments
for more information.
Details at CommonVGAMffArguments
.
Setting bred = TRUE
should work for
multiple responses and all VGAM link functions;
it has been tested for
loge
,
identity
but further testing is required.
Details at CommonVGAMffArguments
.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as
vglm
,
vgam
,
rrvglm
,
cqo
,
and cao
.
With multiple responses, assigning a known dispersion parameter for each response is not handled well yet. Currently, only a single known dispersion parameter is handled well.
negbinomial
.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London: Chapman & Hall.
Links
,
hdeff.vglm
,
negbinomial
,
genpoisson
,
zipoisson
,
pospoisson
,
oipospoisson
,
otpospoisson
,
skellam
,
mix2poisson
,
cens.poisson
,
ordpoisson
,
amlpoisson
,
inv.binomial
,
simulate.vlm
,
loge
,
polf
,
rrvglm
,
cqo
,
cao
,
binomialff
,
poisson
,
Poisson
,
poisson.points
,
ruge
,
V1
,
residualsvglm
.
# NOT RUN {
poissonff()
set.seed(123)
pdata <- data.frame(x2 = rnorm(nn <- 100))
pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)),
y2 = rpois(nn, exp(1 + x2)))
(fit1 <- vglm(cbind(y1, y2) ~ x2, poissonff, data = pdata))
(fit2 <- vglm(y1 ~ x2, poissonff(bred = TRUE), data = pdata))
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
nn <- 200
cdata <- data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdata <- transform(cdata, lv1 = 0 + x3 - 2*x4)
cdata <- transform(cdata, lambda1 = exp(3 - 0.5 * (lv1-0)^2),
lambda2 = exp(2 - 0.5 * (lv1-1)^2),
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))
cdata <- transform(cdata, y1 = rpois(nn, lambda1),
y2 = rpois(nn, lambda2),
y3 = rpois(nn, lambda3))
# }
# NOT RUN {
lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)
# }
Run the code above in your browser using DataLab