Learn R Programming

RMark (version 2.1.1)

popan.derived: Computes some derived abundance estimates for POPAN models

Description

Computes estimates, standard errors, confidence intervals and var-cov matrix for population size of each group at each occasion and the sum across groups by occasion for POPAN models. If a marklist is provided the estimates are model averaged.

Usage

popan.derived(x,model,revised=TRUE,normal=TRUE,N=TRUE,NGross=TRUE,drop=FALSE)

  popan.Nt(Phi,pent,Ns,vc,time.intervals)

  popan.NGross(Phi,pent,Ns,vc,time.intervals)

Arguments

x
processed data list resulting from process.data
model
a single mark POPAN model or a marklist of POPAN models
revised
if TRUE, uses revised version of model averaged standard error eq 6.12; otherwise uses eq 4.9 of Burnham and Anderson (2002)
Phi
interval-specific survival estimates for each group
pent
occasion-specific prob of entry estimates (first computed by subtraction) for each group
Ns
group specific super-population estimate
vc
variance-covariance matrix of the real parameters
normal
if TRUE, uses confidence interval based on normal distribution; otherwise, uses log-normal
N
if TRUE, will return abundance estimates by group and occasion and total by occasion
NGross
if TRUE, will return gross abundance estimate per group
drop
if TRUE, models with any non-positive variance for betas are dropped
time.intervals
vector of time interval values

Value

  • popan.derived returns a list with the following elements depending on the values of N and NGross: N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N Nbyocc - dataframe of estimates by occasion (summed across groups) and se, lcl,ucl and occasion data Nbyocc.vcv - variance-covariance matrix of abundance estimates in Nbyocc NGross - dataframe of gross abundance estimates by group and se, lcl,and ucl NGross.vcv - variance-covariance matrix of NGross abundance estimates popan.Nt returns a list with the following elements: N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N popan.NGross returns a list with the following elements: NGross - vector of gross abundance estimates by group vcv - variance-covariance matrix of abundance estimates in NGross

Details

popan.derived computes all of the real parameters using covariate.predictions and handles all of the computation using popan.Nt. Description for functions popan.Nt and popan.NGross are given here for completeness but it is not intended that they be called directly. If a model is a marklist of models, the values returned by popan.derived are model averaged using model weights in the model.table; otherwise, it returns the values for the specified model.

References

BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York.

Examples

Run this code
# Example
data(dipper)
dipper.processed=process.data(dipper,model="POPAN",groups="sex")
run.dipper.popan=function()
{
dipper.ddl=make.design.data(dipper.processed)
Phidot=list(formula=~1)
Phitime=list(formula=~time)
pdot=list(formula=~1)
ptime=list(formula=~time)
pentsex.time=list(formula=~time)
Nsex=list(formula=~sex)
#
# Run assortment of models
#
dipper.phisex.time.psex.time.pentsex.time=mark(dipper.processed,
     dipper.ddl,model.parameters=list(Phi=Phidot,p=ptime,
     pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE)
dipper.psex.time.pentsex.time=mark(dipper.processed,dipper.ddl,
     model.parameters=list(Phi=Phitime,p=pdot,
     pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE)
#
# Return model table and list of models
#
return(collect.models() )
}
dipper.popan.results=run.dipper.popan()
popan.derived(dipper.processed,dipper.popan.results)

Run the code above in your browser using DataLab