relation_is_antisymmetric(x)
relation_is_asymmetric(x)
relation_is_bijective(x)
relation_is_binary(x)
relation_is_complete(x)
relation_is_coreflexive(x)
relation_is_endorelation(x)
relation_is_equivalence(x)
relation_is_functional(x)
relation_is_injective(x)
relation_is_irreflexive(x)
relation_is_left_total(x)
relation_is_linear_order(x)
relation_is_partial_order(x)
relation_is_reflexive(x)
relation_is_right_total(x)
relation_is_strict_linear_order(x)
relation_is_strict_partial_order(x)
relation_is_surjective(x)
relation_is_symmetric(x)
relation_is_tournament(x)
relation_is_transitive(x)
relation_is_weak_order(x)
relation_is_preference(x)
relation_is_preorder(x)
relation_is_quasiorder(x)
relation
.Let us write $x R y$ iff $(x, y)$ is contained in $R$.
A binary relation $R$ is called [object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
An endorelation $R$ is called [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Some combinations of these basic properties have special names because of their widespread use: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
If $R$ is a weak order (
There seem to be no commonly agreed definitions for order relations: e.g., Fishburn (1972) requires these to be irreflexive.
H. R. Varian (2002), Intermediate Microeconomics: A Modern Approach. 6th Edition. W. W. Norton & Company.