Learn R Programming

abcrlda (version 1.0.3)

predict.abcrlda: Class Prediction for abcrlda objects

Description

Classifies observations based on a given abcrlda object.

Usage

# S3 method for abcrlda
predict(object, newx, ...)

Arguments

object

An object of class "abcrlda".

newx

Matrix of new values for x at which predictions are to be made.

...

Argument used by generic function predict(object, x, ...).

Value

Returns factor vector with predictions (i.e., assigned labels) for each observation. Factor levels are inherited from the object variable.

Reference

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev, "Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification," in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1300-1304, Sept. 2019. doi: 10.1109/LSP.2019.2918485 URL: https://ieeexplore.ieee.org/document/8720003

See Also

Other functions in the package: abcrlda(), cross_validation(), da_risk_estimator(), grid_search(), risk_calculate()

Examples

Run this code
# NOT RUN {
data(iris)
train_data <- iris[which(iris[, ncol(iris)] == "virginica" |
                           iris[, ncol(iris)] == "versicolor"), 1:4]
train_label <- factor(iris[which(iris[, ncol(iris)] == "virginica" |
                                   iris[, ncol(iris)] == "versicolor"), 5])
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = 0.75)
a <- predict(model, train_data)
# same params but more explicit
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(0.75, 0.25))
b <- predict(model, train_data)
# same class costs ratio
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(3, 1))
c <- predict(model, train_data)
# all this model will give the same predictions
all(a == b & a == c & b == c)
#' [1] TRUE
# }

Run the code above in your browser using DataLab