# NOT RUN {
data(meuse)
data(meuse.grid)
coordinates(meuse.grid) <- ~x+y
meuse.grid.pixdf <- meuse.grid
gridded(meuse.grid.pixdf) <- TRUE
library(constrainedKriging)
data(meuse.blocks)
r.logzn.rob <- georob(log(zinc) ~ sqrt(dist), data = meuse, locations = ~ x + y,
variogram.model = "RMexp", param = c(variance = 0.15, nugget = 0.05, scale = 200),
tuning.psi = 1., control = control.georob(cov.bhat = TRUE, full.cov.bhat = TRUE))
## point predictions of log(Zn)
r.pred.points <- predict(r.logzn.rob, newdata = meuse.grid.pixdf,
control = control.predict.georob(extended.output = TRUE, full.covmat = TRUE))
str(r.pred.points$pred@data)
## back-transformation of point predictions
r.backtf.pred.points <- lgnpp(r.pred.points)
str(r.pred.points$pred@data)
spplot(r.backtf.pred.points[["pred"]], zcol = "lgn.pred", main = "Zn content")
## predicting mean Zn content for whole area
r.block <- lgnpp(r.pred.points, is.block = TRUE, all.pred = r.backtf.pred.points[["pred"]])
r.block
## block predictions of log(Zn)
r.pred.block <- predict(r.logzn.rob, newdata = meuse.blocks,
control = control.predict.georob(extended.output = TRUE,
pwidth = 75, pheight = 75))
r.backtf.pred.block <- lgnpp(r.pred.block, newdata = meuse.grid)
spplot(r.backtf.pred.block, zcol = "lgn.pred", main = "block means Zn content")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab