# NOT RUN {
# These examples use the data 'eurusd' which comes with the
# package, but in a scaled form.
data <- cbind(10*eurusd[,1], 100*eurusd[,2])
colnames(data) <- colnames(eurusd)
# GMVAR(2,2) model
params22 <- c(1.386, -0.767, 1.314, 0.145, 0.094, 1.292, -0.389, -0.07,
-0.109, -0.281, 0.92, -0.025, 4.839, 0.998, 5.916, 1.248, 0.077, -0.04,
1.266, -0.272, -0.074, 0.034, -0.313, 5.855, 3.569, 9.837, 0.741)
fit22 <- GMVAR(data, p=2, M=2, params=params22)
p1 <- predict(fit22, n_ahead=10, pred_type="median", n_simu=500)
p1
p2 <- predict(fit22, n_ahead=10, nt=20, lty=1, n_simu=500)
p2
p3 <- predict(fit22, n_ahead=10, pi=c(0.99, 0.90, 0.80, 0.70),
nt=30, lty=0, n_simu=500)
p3
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params222s <- c(-11.964, 155.024, 11.636, 124.988, 1.314, 0.145, 0.094, 1.292,
-0.389, -0.07, -0.109, -0.281, 1.248, 0.077, -0.04, 1.266, -0.272, -0.074,
0.034, -0.313, 0.903, 0.718, -0.324, 2.079, 7.00, 1.44, 0.742)
W_222 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod222s <- GMVAR(data, p=2, M=2, params=params222s, parametrization="mean",
structural_pars=list(W=W_222))
p1 <- predict(mod222s, n_ahead=10, n_simu=500)
# }
Run the code above in your browser using DataLab