ideal
object. This predict method uses the posterior mean values of x and beta to
make predictions.## S3 method for class 'ideal':
predict(object,
cutoff=.5,
start=rownames(object$x)[1],
...)## S3 method for class 'predict.ideal':
print(x,digits=2,...)
ideal
(produced by
ideal
) with item parameters (beta) stored.predict.ideal
predict.ideal
, containing:rollcall
object used for ideal
. If no
party information is available, party.percent = NULL
.ideal
object, which can be
later eval
uatedrollcall
object passed to ideal
cutoff
as the
threshold.ideal
, summary.ideal
, plot.predict.ideal
data(s109)
id1 <- ideal(s109, meanzero=TRUE,
store.item=TRUE) ## too long for examples
id1 <- ideal(s109,
d=1,
meanzero=TRUE,
store.item=TRUE, ## need this to be TRUE for predict
maxiter=1000,
burnin=100,
thin=10)
phat <- predict(id1)
phat ## print method
Run the code above in your browser using DataLab