# NOT RUN {
library(stats)
data(wetland) ## Loads species data
## Creates three clusters using kmeans
wetkm = kmeans(wetland, centers=3)
## Determine sensitivity of individual species
B=strassoc(wetland, cluster=wetkm$cluster,func="B")
## Select species with more than 20% of sensitivity for the first group
sel=which(B[,1]>0.2)
## Run indicator analysis with species combinations for the first group
sc= indicators(X=wetland[,sel], cluster=wetkm$cluster, group=1, verbose=TRUE, At=0.5, Bt=0.2)
## Use the indicators to make predictions
## (normally an independent data set will be used)
p<-predict(sc, wetland)
## Show original groups with prediction for group 1
print(data.frame(wetkm$cluster,p))
# }
Run the code above in your browser using DataLab