Last chance! 50% off unlimited learning
Sale ends in
## S3 method for class 'ksvm':
predict(object, newdata, type = "response", coupler = "minpair")
ksvm
created by the
ksvm
functionresponse
, probabilities
,votes
indicating the type of output: predicted values, matrix of class
probabilities, or matrix of vote counts.minpair
or pkpd
(see reference for more details).type(object)
is C-svc
,
nu-svc
, C-bsvm
or spoc-svc
the vector returned depends on the argument type
:type(object)
is eps-svr
, eps-bsvr
or
nu-svr
a vector of predicted values is returned.
If type(object)
is one-classification
a vector of
logical values is returned.## example using the promotergene data set
data(promotergene)
## create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind, ]
genetest <- promotergene[ind, ]
## train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",kpar=list(sigma=0.015),C=70,cross=4,prob.model=TRUE)
gene
## predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype
Run the code above in your browser using DataLab