Prediction of test data using support vector machines
# S4 method for ksvm
predict(object, newdata, type = "response", coupler = "minpair")
an S4 object of class ksvm
created by the
ksvm
function
a data frame or matrix containing new data
one of response
, probabilities
,votes
, decision
indicating the type of output: predicted values, matrix of class
probabilities, matrix of vote counts, or matrix of decision values.
Coupling method used in the multiclass case, can be one
of minpair
or pkpd
(see reference for more details).
If type(object)
is C-svc
,
nu-svc
, C-bsvm
or spoc-svc
the vector returned depends on the argument type
:
predicted classes (the classes with majority vote).
matrix of class probabilities (one column for each class and one row for each input).
matrix of vote counts (one column for each class and one row for each new input)
T.F. Wu, C.J. Lin, R.C. Weng. Probability estimates for Multi-class Classification by Pairwise Coupling https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf
H.T. Lin, C.J. Lin, R.C. Weng A note on Platt's probabilistic outputs for support vector machines https://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.pdf
# NOT RUN {
## example using the promotergene data set
data(promotergene)
## create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind, ]
genetest <- promotergene[ind, ]
## train a support vector machine
gene <- ksvm(Class~.,data=genetrain,kernel="rbfdot",
kpar=list(sigma=0.015),C=70,cross=4,prob.model=TRUE)
gene
## predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype
# }
Run the code above in your browser using DataLab