# NOT RUN {
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <-PimaIndiansDiabetes[idtrain,]
Pimatest <-PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[,-c(9)],Y = PimaTrain$diabetes,
threshold_pruning = 0.25,nbr_obs_leaf = 100)
## Use the model on the test dataset to make a prediction
PimaPrediction <- predict.llm(object = Pima.llm, X = Pimatest[,-c(9)])
## Optionally add the dependent to calculate performance statistics such as AUC
# PimaPrediction <- cbind(PimaPrediction, "diabetes" = Pimatest[,"diabetes"])
# }
Run the code above in your browser using DataLab