## S3 method for class 'pgam':
predict(object, forecast = FALSE, k = 1, x = NULL, ...)
pgam
holding the fitted modelTRUE
the function tries to forecastConsidering a Poisson process and a gamma priori, the predictive distribution of the model is negative binomial with parameters $a_{t|t-1}$ and $b_{t|t-1}$. So, the conditional mean and variance are given by $$E\left(y_{t}|Y_{t-1}\right)=a_{t|t-1}/b_{t|t-1}$$ and $$Var\left(y_{t}|Y_{t-1}\right)=a_{t|t-1}\left(1+b_{t|t-1}\right)/b_{t|t-1}^{2}$$
Deviance components are estimated as follow $$D\left(y;\hat\mu\right)=2\sum_{t=\tau+1}^{n}{a_{t|t-1}\log \left(\frac{a_{t|t-1}}{y_{t}b_{t|t-1}}\right)-\left(a_{t|t-1}+y_{t}\right)\log \frac{\left(y_{t}+a_{t|t-1}\right)}{\left(1+b_{t|t-1}\right)y_{t}}}$$
Generalized Pearson statistics has the form $$X^{2}=\sum_{t=\tau+1}^{n}\frac{\left(y_{t}b_{t|t-1}-a_{t|t-1}\right)^{2}} {a_{t|t-1}\left(1+b_{t|t-1}\right)}$$
Dispersion parameter estimation is computed by $$\phi=\frac{X^{2}}{gl_{r}}$$ where $gl_{r}$ is the residuals degrees of freedom.
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para S�ries Temporais de Dados de Contagem - Teoria e Aplica��es. 10a ESTE - Escola de S�ries Temporais e Econometria
Junger, W. L. (2004) Modelo Poisson-Gama Semi-Param�trico: Uma Abordagem de Penaliza��o por Rugosidade. MSc Thesis. Rio de Janeiro, PUC-Rio, Departamento de Engenharia El�trica
Harvey, A. C. (1990) Forecasting, structural time series models and the Kalman Filter. Cambridge, New York
Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London
McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition, London
pgam
, residuals.pgam
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS",partial.resid="response")
p <- predict(m)$yhat
plot(ITRESP5)
lines(p)
Run the code above in your browser using DataLab