Learn R Programming

systemfit (version 0.7-3)

predict.systemfit: Predictions from Equation System Estimation

Description

Returns the predicted values, their standard errors and the confidence limits of prediction.

Usage

## S3 method for class 'systemfit':
predict( object, data = object$data,
                             se.fit = FALSE, se.pred = FALSE,
                             interval = "none", level=0.95, ... )

Arguments

object
an object of type systemfit.
data
data frame in which to predict.
se.fit
return the standard error of the fitted values?
se.pred
return the standard error of prediction?
interval
Type of interval calculation ("none", "confidence" or "prediction")
level
Tolerance/confidence level.
...
additional optional arguments.

Value

  • predict.systemfit returns a dataframe that contains for each equation the predicted values (e.g. "eq1.pred") and if requested the standard errors of the fitted values (e.g. "eq1.se.fit"), the standard errors of the prediction (e.g. "eq1.se.pred"), and the lower (e.g. "eq1.lwr") and upper (e.g. "eq1.upr") limits of the confidence or prediction interval(s).

Details

The variance of the fitted values (used to calculate the standard errors of the fitted values and the "confidence interval") is calculated by $Var[E[y^0]-\hat{y}^0]=x^0 \; Var[b] \; {x^0}'$ The variances of the predicted values (used to calculate the standard errors of the predicted values and the "prediction intervals") is calculated by $Var[y^0-\hat{y}^0]=\hat{\sigma}^2+x^0 \; Var[b] \; {x^0}'$

References

Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Macmillan.

Gujarati, D. N. (1995) Basic Econometrics, Third Edition, McGraw-Hill.

Kmenta, J. (1997) Elements of Econometrics, Second Edition, University of Michigan Publishing.

See Also

systemfit, predict.systemfit.equation and predict

Examples

Run this code
library( systemfit )
data( kmenta )
demand <- q ~ p + d
supply <- q ~ p + f + a
labels <- list( "demand", "supply" )
system <- list( demand, supply )

## OLS estimation
fitols <- systemfit("OLS", system, labels, data=kmenta )

## calculate predicted values and limits
predict( fitols )

Run the code above in your browser using DataLab