Predict textmodel_wordscores
# S3 method for textmodel_wordscores
predict(object, newdata = NULL,
se.fit = FALSE, interval = c("none", "confidence"), level = 0.95,
rescaling = c("none", "lbg", "mv"), force = FALSE, ...)
a fitted Wordscores textmodel
dfm on which prediction should be made
if TRUE
, return standard errors as well
type of confidence interval calculation
tolerance/confidence level for intervals
"none"
for "raw" scores; "lbg"
for LBG (2003)
rescaling; or "mv"
for the rescaling proposed by Martin and Vanberg
(2007). See References.
make newdata's feature set conformant to the model terms
not used
predict.textmodel_wordscores()
returns a named vector of predicted
document scores ("text scores" se.fit = TRUE
consisting of the predicted scores ($fit
) and the
associated standard errors ($se.fit
). When interval =
"confidence"
, the predicted values will be a matrix. This behaviour matches
that of predict.lm
.
# NOT RUN {
ws <- textmodel_wordscores(data_dfm_lbgexample, c(seq(-1.5, 1.5, .75), NA))
predict(ws)
predict(ws, rescaling = "mv")
predict(ws, rescaling = "lbg")
predict(ws, se.fit = TRUE)
predict(ws, se.fit = TRUE, interval = "confidence")
predict(ws, se.fit = TRUE, interval = "confidence", rescaling = "lbg")
# }
Run the code above in your browser using DataLab