predict.vglm(object, newdata = NULL,
type = c("link", "response", "terms"),
se.fit = FALSE, deriv = 0, dispersion = NULL,
untransform=FALSE, extra = object@extra, ...)
"vlm"
."response"
is on the scale of the response variable, and
depending on the family function, this may or may notype="link", se.fit=FALSE, deriv=0
.predict.vlm
.se.fit = FALSE
, a vector or matrix of predictions.
If se.fit = TRUE
, a list with components This code implements smart prediction
(see smartpred
).
predict
,
vglm
,
predict.vlm
,
smartpred
.# Illustrates smart prediction
data(pneumo)
pneumo = transform(pneumo, let=log(exposure.time))
fit = vglm(cbind(normal,mild, severe) ~ poly(c(scale(let)), 2),
fam=cumulative(parallel=TRUE),
data=pneumo, trace=TRUE, x=FALSE)
class(fit)
(q0 = predict(fit)[1:3,])
(q1 = predict(fit, newdata=pneumo)[1:3,])
(q2 = predict(fit, newdata=pneumo[1:3,]))
all.equal(q0, q1) # Should be TRUE
all.equal(q1, q2) # Should be TRUE
predict(fit)[1:3,]
predict(fit, untransform=TRUE)[1:3,]
p0 = predict(fit, type="res")[1:3,]
p1 = predict(fit, type="res", newdata=pneumo)[1:3,]
p2 = predict(fit, type="res", newdata=pneumo[1:3,])
p3 = fitted(fit)[1:3,]
all.equal(p0, p1) # Should be TRUE
all.equal(p1, p2) # Should be TRUE
all.equal(p2, p3) # Should be TRUE
predict(fit, type="t", se=TRUE)
Run the code above in your browser using DataLab