# NOT RUN {
require(spdep)
data(boston)
samp <- sample( dim( boston.c )[ 1 ], 300)
d <- boston.c[ samp, ] ## Data at observed sites
y <- d[, "CMEDV"]
x <- d[,c("ZN", "LSTAT")]
xconst <- d[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords <- d[,c("LAT","LON")]
d0 <- boston.c[-samp, ] ## Data at unobserved sites
x0 <- d0[,c("ZN", "LSTAT")]
xconst0 <- d0[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords0 <- d0[,c("LAT","LON")]
############ Model estimation
meig <- meigen( coords = coords )
mod <- resf_vc(y=y, x=x, xconst=xconst, meig=meig )
############ Spatial prediction of y and spatially varying coefficients
meig0 <- meigen0( meig = meig, coords0 = coords0 )
pred0 <- predict0_vc( mod = mod, x0 = x0, xconst0=xconst0, meig0 = meig0 )
pred0$pred[1:10,] # Predicted explained variables
pred0$b_vc[1:10,] # Predicted SVCs
pred0$bse_vc[1:10,]# Predicted standard errors of the SVCs
pred0$t_vc[1:10,] # Predicted t-values of the SNVCs
pred0$p_vc[1:10,] # Predicted p-values of the SNVCs
############ or spatial prediction of spatially varying coefficients only
# pred00 <- predict0_vc( mod = mod, meig0 = meig0 )
# pred00$b_vc[1:10,]
# pred00$bse_vc[1:10,]
# pred00$t_vc[1:10,]
# pred00$p_vc[1:10,]
######################## If SNVCs are assumed on x
# mod2 <- resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_nvc=TRUE,xconst_nvc=TRUE )
# pred02 <- predict0_vc( mod = mod2, x0 = x0, xconst0=xconst0 ,meig0 = meig0 )
# pred02$pred[1:10,] # Predicted explained variables
# pred02$b_vc[1:10,] # Predicted SNVCs
# pred02$bse_vc[1:10,]# Predicted standard errors of the SNVCs
# pred02$t_vc[1:10,] # Predicted t-values of the SNVCs
# pred02$p_vc[1:10,] # Predicted p-values of the SNVCs
# }
Run the code above in your browser using DataLab