Learn R Programming

PRIMsrc (version 0.6.3)

predict.PRSP: Predict Function

Description

S3-generic predict function to predict the box membership and box vertices on an independent set.

Usage

# S3 method for PRSP
predict(object, 
                         newdata, 
                         steps, 
                         na.action = na.omit, ...)

Arguments

object
Object of class PRSP as generated by the main function sbh.
newdata
Either a numeric matrix or numeric vector containing the new input data of same dimensionality as the final PRSP object of used covariates. A vector will be transformed to a (\#sample x 1) matrix.
steps
Integer vector. Vector of peeling steps at which to predict the box memberships and box vertices. Defaults to the last peeling step only.
na.action
A function to specify the action to be taken if NAs are found. The default action is na.omit, which leads to rejection of incomplete cases.
Further generic arguments passed to the predict function.

Value

List containing the following 2 fields:
boxind
Logical matrix of predicted box membership indicator (columns) by peeling steps (rows). TRUE = in-box, FALSE = out-of-box.
vertices
List of size the number of chosen peeling steps where each entry is a numeric matrix of predicted box vertices: lower and upper bounds (rows) by covariate (columns).

References

  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2015). "Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods." Statistical Analysis and Data Mining (in press).
  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2014). "Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods." In JSM Proceedings, Survival Methods for Risk Estimation/Prediction Section. Boston, MA, USA. American Statistical Association IMS - JSM, p. 3366-3380.
  • Dazard J-E., Choe M., LeBlanc M. and Rao J.S. (2015). "R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification." In JSM Proceedings, Statistical Programmers and Analysts Section. Seattle, WA, USA. American Statistical Association IMS - JSM, (in press).
  • Dazard J-E. and J.S. Rao (2010). "Local Sparse Bump Hunting." J. Comp Graph. Statistics, 19(4):900-92.

Examples

Run this code
#===================================================
# Loading the library and its dependencies
#===================================================
library("PRIMsrc")

#=================================================================================
# Simulated dataset #1 (n=250, p=3)
# Non Replicated Combined Cross-Validation (RCCV)
# Peeling criterion = LRT
# Optimization criterion = LRT
#=================================================================================
CVCOMB.synt1 <- sbh(dataset = Synthetic.1, 
                    cvtype = "combined", cvcriterion = "lrt",
                    B = 1, K = 5, 
                    vs = TRUE, cpv = FALSE, 
                    decimals = 2, probval = 0.5, 
                    arg = "beta=0.05,
                           alpha=0.1,
                           minn=10,
                           L=NULL,
                           peelcriterion=\"lr\"",
                    parallel = FALSE, conf = NULL, seed = 123)

n <- 100
p <- length(CVCOMB.synt1$cvfit$cv.used)
x <- matrix(data=runif(n=n*p, min=0, max=1),
            nrow=n, ncol=p, byrow=FALSE,
            dimnames=list(1:n, paste("X", 1:p, sep="")))
CVCOMB.pred <- predict(object=CVCOMB.synt1,
                       newdata=x,
                       steps=CVCOMB.synt1$cvfit$cv.nsteps)

Run the code above in your browser using DataLab