Learn R Programming

frbs (version 1.0-0)

predict.frbs: The frbs prediction stage

Description

This is the main function to obtain a final result as predicted values for all methods in this package. In order to get predicted values, this function is run using an frbs-object, which is typically generated using frbs.learn.

Usage

## S3 method for class 'frbs':
predict(object, newdata, ...)

Arguments

object
newdata
a matrix(m x n) of data for the prediction process, where m is the number of instances and n is the number of input variables.
...
the other parameters (not used)

Value

  • The predicted values.

See Also

frbs.learn and frbs.gen for learning and model generation, and the internal main functions of each method for the theory: WM, GFS, SBC, HyFIS, ANFIS, DM, DENFIS, HGD, frcs, and MSGFS.

Examples

Run this code
##################################
## I. Regression Problem
###################################
data.train <- matrix(c(5.2, -8.1, 4.8, 8.8, -16.1, 4.1, 10.6, -7.8, 5.5, 10.4, -29.0,
                       5.0, 1.8, -19.2, 3.4, 12.7, -18.9, 3.4, 15.6, -10.6, 4.9, 1.9,
                       -25.0, 3.7, 2.2, -3.1, 3.9, 4.8, -7.8, 4.5, 7.9, -13.9, 4.8,
                       5.2, -4.5, 4.9, 0.9, -11.6, 3.0, 11.8, -2.1, 4.6, 7.9, -2.0,
                       4.8, 11.5, -9.0, 5.5, 10.6, -11.2, 4.5, 11.1, -6.1, 4.7, 12.8,
                       -1.0, 6.6, 11.3, -3.6, 5.1, 1.0, -8.2, 3.9, 14.5, -0.5, 5.7,
                       11.9, -2.0, 5.1, 8.1, -1.6, 5.2, 15.5, -0.7, 4.9, 12.4, -0.8,
                       5.2, 11.1, -16.8, 5.1, 5.1, -5.1, 4.6, 4.8, -9.5, 3.9, 13.2,
                       -0.7, 6.0, 9.9, -3.3, 4.9, 12.5, -13.6, 4.1, 8.9, -10.0,
                       4.9, 10.8, -13.5, 5.1), ncol = 3, byrow = TRUE)

data.fit <- matrix(c(10.5, -0.9, 5.2, 5.8, -2.8, 5.6, 8.5, -0.2, 5.3, 13.8, -11.9,
                     3.7, 9.8, -1.2, 4.8, 11.0, -14.3, 4.4, 4.2, -17.0, 5.1, 6.9,
                     -3.3, 5.1, 13.2, -1.9, 4.6), ncol = 3, byrow = TRUE)

newdata <- matrix(c(10.5, -0.9, 5.8, -2.8, 8.5, -0.2, 13.8, -11.9, 9.8, -1.2, 11.0,
                      -14.3, 4.2, -17.0, 6.9, -3.3, 13.2, -1.9), ncol = 2, byrow = TRUE)

range.data<-matrix(c(0.9, 15.6, -29, -0.2, 3, 6.6), ncol=3, byrow = FALSE)
#############################################################
## I.1 The example: Implementation of Wang & Mendel
#############################################################
method.type <- "WM"

control.WM <- list(num.labels = 5, type.mf = 3, type.defuz = 1,
                    type.tnorm = 1, type.snorm = 1)

object <- frbs.learn(data.train, range.data, method.type, control.WM)

## the prediction process
## The following code is be used for all methods
res <- predict(object, newdata)

Run the code above in your browser using DataLab