# NOT RUN {
 require(raster)
 # read remote sensing data
 file <- list.files(system.file('extdata', '', package="rsMove"), 'ndvi.tif', full.names=TRUE)
 r.stk <- stack(file)
 # read movement data
 data(shortMove)
 # observation time
 obs.time <- strptime(paste0(shortMove@data$date, ' ', shortMove@data$time),
 format="%Y/%m/%d %H:%M:%S")
 # remove redundant samples
 shortMove <- moveReduce(shortMove, r.stk, obs.time)$points
 # retrieve remote sensing data for samples
 rsQuery <- extract(r.stk, shortMove)
 # identify unique sample regions
 label <- labelSample(shortMove, r.stk, agg.radius=30)
 # select background samples
 bSamples <- backSample(shortMove, r.stk, label, sampling.method='pca')
 # derive model predictions
 out <- predictResources(rsQuery, bSamples@data, label, env.data=r.stk)
# }
Run the code above in your browser using DataLab