hlme
, lcmm
, multlcmm
or Jointlcmm
object in the natural scale of the longitudinal outcome(s) for a specified profile of covariates.hlme
and Jointlcmm
objects, the function computes the predicted values of the longitudinal marker in each latent class for a specified profile of covariates.
For lcmm
and multlcmm
objects, the function computes predicted values in the natural scale of the outcomes for a specified profile of covariates. For linear and threshold links, the predicted values are computed analytically. For splines and Beta links, a Gauss-Hermite or Monte-Carlo integration are used to numerically compute the predictions. In addition, for any type of link function, confidence bands (and median) can be computed by a Monte Carlo approximation of the posterior distribution of the predicted values.## S3 method for class 'lcmm':
predictY(x,newdata,methInteg=0,nsim=20,draws=FALSE,ndraws=2000,
na.action=1,...)
## S3 method for class 'hlme':
predictY(x,newdata,na.action=1,...)
## S3 method for class 'Jointlcmm':
predictY(x,newdata,na.action=1,...)
## S3 method for class 'multlcmm':
predictY(x,newdata,methInteg=0,nsim=20,draws=FALSE,ndraws=2000,
na.action=1,...)
lcmm
, hlme
, Jointlcmm
or multlcmm
representing a general latent class mixed model.lcmm
lcmm
or multlcmm
object only; optional number of points used in the numerical integration with splines or Beta link functions. For methInteg=0, nsim should be chosen among the following values: 5, 7, 9, 15, 20, 30, 40 or 50lcmm
or multlcmm
object only; optional boolean specifying whether median and confidence bands of the predicted values should be computed (TRUE) - whatever the type of link function. In this case, a Monte Carlo approximationlcmm
or multlcmm
object only; if draws=TRUE, ndraws specifies the number of draws that should be generated to approximate the posterior distribution of the predicted values. By default, ndraws=2000.For hlme
and Jointlcmm
objects or lcmm
with draws=FALSE
, returns a matrix with ng columns corresponding to the ng class-specific vectors of predicted values computed at the point estimate
For objects of class lcmm
with draws=TRUE
, returns a matrix with ng*3 columns representing the ng class-specific 50%, 2.5% and 97.5% percentiles of the approximated posterior distribution of the class-specific predicted values.
For objects of class multlcmm
with draws=FALSE
, returns a matrix with ng+1 columns: the first column indicates the name of the outcome which is predicted and the ng subsequent columns correspond to the ng class-specific vectors of predicted values computed at the point estimate
For objects of class multlcmm
with draws=TRUE
, returns a matrix with ng*3+1 columns: the first column indicates the name of the outcome which is predicted and the ng*3 subsequent columns correspond to the ng class-specific 50%, 2.5% and 97.5% percentiles of the approximated posterior distribution of the class-specific predicted values.
lcmm
, multlcmm
, hlme
, Jointlcmm
#### Prediction from a 2-class model with a Splines link function
data(data_Jointlcmm)
## fitted model
m<-lcmm(Ydep2~Time*X1,mixture=~Time,random=~Time,classmb=~X2+X3,
subject='ID',ng=2,data=data_Jointlcmm,link="splines",B=c(
-0.175, -0.191, 0.654, -0.443,
-0.345, -1.780, 0.913, 0.016,
0.389, 0.028, 0.083, -7.349,
0.722, 0.770, 1.376, 1.653,
1.640, 1.285))
summary(m)
## predictions for times from 0 to 5 for X1=0
newdata<-data.frame(Time=seq(0,5,length=100),
X1=rep(0,100),X2=rep(0,100),X3=rep(0,100))
pred0 <- predictY(m,newdata)
head(pred0)
## Option draws=TRUE to compute a MonteCarlo
# approximation of the predicted value distribution
# (quite long with ndraws=2000 by default)
\dontrun{
pred0MC <- predictY(m,newdata,draws=TRUE)
}
## predictions for times from 0 to 5 for X1=1
newdata$X1 <- 1
pred1 <- predictY(m,newdata)
## Option draws=TRUE to compute a MonteCarlo
# approximation of the predicted value distribution
# (quite long with ndraws=2000 by default)
\dontrun{
pred1MC <- predictY(m,newdata,draws=TRUE)
}
Run the code above in your browser using DataLab