prepProbObj creates an instance of class
  optObj  with respect to the specified
  solver.prepProbObj(model, nCols, nRows,
              wtflux = NA,
              MOMAflag = FALSE,
              COBRAflag = FALSE,
              minTotalFluxFLAG = FALSE,
              minDistFLAG = FALSE,
              scaling = NA,
              solver = SYBIL_SETTINGS("SOLVER"),
              method = SYBIL_SETTINGS("METHOD"),
              lpdir = SYBIL_SETTINGS("OPT_DIRECTION"),
              solverParm = SYBIL_SETTINGS("SOLVER_CTRL_PARM"))modelorg.simpleFBA).
Default: NA.optimizer).
Default: FALSE.optimizer).
Default: FALSE.simpleFBA).
Default: FALSE.simpleFBA).
Default: FALSE.optObj ).
Default: FALSE.SYBIL_SETTINGS for possible values.
Default: SYBIL_SETTINGS("SOLVER").solver.  See SYBIL_SETTINGS
    for possible values.
Default: SYBIL_SETTIN"min" or
    "max".
Default: SYBIL_SETTINGS("OPT_DIRECTION").SYBIL_SETTINGS("SOLVER_CTRL_PARM"), (see Details below).optObj , or FALSE.prepProbObj creates an instance of class
  optObj  with respect to the specified
  solver and desired algorithm. The object type (slot oobj) is
  determined by the argument solver. The properties of the
  problem itself are dependent on the specified algorithm
  (e.g. number of rows and columns of the constraint matrix, etc.).
  
  Parameters can be set as data frame:
  solverParm = data.frame(parm1 = val1, parm2 = val2)
  with parm1 and parm2 beeing the names of
  two different parameters and val1 and val2 the
  corresponding values. For possible parameters and values see
  the documentation of the used solver package (e.g. Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290--1307.
optObj , optimizer,
         simpleFBA and SYBIL_SETTINGS.