preseqR.ztnb.em: Fitting a zero-truncated negative binomial distribution
Description
preseqR.ztnb.em fits a zero-truncated negative binomial (ZTNB)
distribution to the initial sample.
Since the species with zero observations are missed in the sample, an
EM algorithm is used to estimate the parameters assuming the number of
individuals for each species follows a Negative Binomial distribution
with the zero counts as a missing latent data.
Usage
preseqR.ztnb.em(n, size = SIZE.INIT, mu = MU.INIT)
Arguments
n
A two-column matrix.
The first column is the frequency \(j = 1,2,\dots\); and the second column
is \(N_j\), the number of species with each species represented exactly \(j\)
times in the initial sample. The first column must be sorted in an
ascending order.
size
A positive double setting the initial value of the parameter size in
a negative binomial distribution for the EM algorithm. Default value is 1.
mu
A positive double setting the initial value of the parameter mu in a
negative binomial distribution for the EM algorithm. Default value is 0.5.
Value
size
The estimate of the parameter size in the negative binomial.
mu
The estimate of the parameter mu in the negative binomial.
# NOT RUN {## load librarylibrary(preseqR)
## import datadata(FisherButterfly)
## print the parameters of a fitting negative binomial distributionpreseqR.ztnb.em(FisherButterfly)
# }