# NOT RUN {
dreamdata <- t(matrix(c(7,4,3,7,10,15,11,13,23,9,11,7,28,9,12,10,32,5,4,3),4,5))
bd <- cabootcrs(dreamdata)
printca(bd, datasetname="Dreams")
## The function is currently defined as
function (x, datasetname = "")
{
printwithaxes <- function(res, thenames) {
names(res) <- thenames
print(res, digits = 4)
}
d <- min(x@printdims, x@br@r)
axnames <- character(length = d)
for (i in 1:d) {
axnames[i] <- paste(" Axis", i)
}
cat("\n RESULTS for Correspondence Analysis:", datasetname,
"\n\n")
cat("Total inertia ", x@inertiasum, "\n\n")
cat("Inertias, percent inertias and cumulative percent inertias \n\n")
ins <- data.frame(x@inertias)
names(ins) <- c("Inertia", "% ", "Cum. %")
print(ins, digits = 6)
cat("\nRows in principal coordinates\n\n")
printwithaxes(data.frame(x@Rowprinccoord[, 1:d], row.names = x@rowlabels),
axnames)
cat("\nRow contributions (per mil)\n\n")
printwithaxes(data.frame(round(x@RowCTR[, 1:d] * 1000), row.names = x@rowlabels),
axnames)
cat("\nRow representations (per mil)\n\n")
printwithaxes(data.frame(round(x@RowREP[, 1:d] * 1000), row.names = x@rowlabels),
axnames)
cat("\nColumns in principal coordinates\n\n")
printwithaxes(data.frame(x@Colprinccoord[, 1:d], row.names = x@collabels),
axnames)
cat("\nColumn contributions (per mil)\n\n")
printwithaxes(data.frame(round(x@ColCTR[, 1:d] * 1000), row.names = x@collabels),
axnames)
cat("\nColumn representations (per mil)\n\n")
printwithaxes(data.frame(round(x@ColREP[, 1:d] * 1000), row.names = x@collabels),
axnames)
if (x@nboots > 0) {
cat("\n\n Results for Bootstrapping\n\n")
cat(x@nboots, "bootstrap replications with", x@resampledistn,
"resampling\n")
if (x@resampledistn == "multinomial" & x@multinomialtype !=
"whole")
cat(paste(" ", switch(x@multinomialtype, rowsfixed = "with row sums constant",
columnsfixed = "with column sums constant"),
"\n"))
cat("\nEstimated variances and covariances\n\n")
cat("Rows\n\n")
print(allvarscovs(x, "rows"), digits = 4)
cat("\nColumns\n\n")
print(allvarscovs(x, "columns"), digits = 4)
cat("\n\n")
}
}
# }
Run the code above in your browser using DataLab