n=200; p=8
truK=diag(p)
for (i in 1:(p-1)) truK[i,i+1]=truK[i+1,i]=0.5
truK[1,p]=truK[p,1]=0.4
data=mvrnorm(n,c(rep(0,p)),solve(truK))
# we run our BDMCMC for small number of iterations, only for checking the result
output=BDMCMC(data,iter=40,burn=10)
prob.allgraphs(output)
Run the code above in your browser using DataLab