Learn R Programming

sirt (version 0.36-30)

prob.guttman: Probabilistic Guttman Model

Description

This function estimates the probabilistic Guttman model which is a special case of an ordered latent trait model (Hanson 2000, Proctor, 1970).

Usage

prob.guttman(dat, pid = NULL, guess.equal = FALSE,  slip.equal = FALSE, 
    itemlevel = NULL, conv1 = 0.001, glob.conv = 0.001, mmliter = 500)
    
## S3 method for class 'prob.guttman':
summary(object,...)

Arguments

dat
An $N \times I$ data frame of dichotomous item responses
pid
Optional vector of person identifiers
guess.equal
Should the same guessing parameters for all the items estimated?
slip.equal
Should the same slipping parameters for all the items estimated?
itemlevel
A vector of item levels of the Guttman scale for each item. If there are $K$ different item levels, then the Guttman scale possesses $K$ ordered trait values.
conv1
Convergence criterion for item parameters
glob.conv
Global convergence criterion for the deviance
mmliter
Maximum number of iterations
object
Object of class prob.guttman
...
Further arguments to be passed

Value

  • An object of class prob.guttman
  • personEstimated person parameters
  • itemEstimated item parameters
  • theta.kAbility levels
  • traitEstimated trait distribution
  • icInformation criteria
  • devianceDeviance
  • iterNumber of iterations
  • itemdesignSpecified allocation of items to trait levels

References

Hanson, B. (2000). IRT parameter estimation using the EM algorithm. Technical Report. Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.

See Also

A summary can be obtained using summary.prob.guttman.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- data.read

#***
# Model 1: estimate probabilistic Guttman model
mod1 <- prob.guttman( dat )
summary(mod1)

#***
# Model 2: Guttman model with equal guessing and slipping parameters
mod2 <- prob.guttman( dat , guess.equal=TRUE , slip.equal=TRUE)
summary(mod2)

#***
# Model 3: Guttman model with three a priori specified item levels
itemlevel <- rep(1,12)
itemlevel[ c(2,5,8,10,12) ] <- 2
itemlevel[ c(3,4,6) ] <- 3
mod3 <- prob.guttman( dat , itemlevel=itemlevel )
summary(mod3)

Run the code above in your browser using DataLab