Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.38-2)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
2,109
Version
0.38-2
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
June 4th, 2011
Functions in pomp (0.38-2)
Search all functions
pfilter-methods
Methods of the "pfilterd.pomp" class
ou2
Two-dimensional discrete-time Ornstein-Uhlenbeck process
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
pomp-fun
Definition and methods of the "pomp.fun" class
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
pomp-methods
Methods of the "pomp" class
simulate-pomp
Running simulations of a partially-observed Markov process
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
mif-class
The "mif" class
traj.match
Trajectory matching
sir
Seasonal SIR model implemented using two stochastic simulation algorithms.
verhulst
Simple Verhulst-Pearl (logistic) model.
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
blowflies
Model for Nicholson's blowflies.
particles-mif
Generate particles from the user-specified distribution.
mif
The MIF algorithm
B-splines
B-spline bases
pomp-class
Partially-observed Markov process class
gompertz
Gompertz model with normal observations.
pfilter
Particle filter
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
spect
Power spectrum computation for partially-observed Markov processes.
rw2
Two-dimensional random-walk process
rprocess-pomp
Simulate the process model of a partially-observed Markov process
pomp-package
Partially-observed Markov processes
pmcmc-methods
Methods of the "pmcmc" class
bsmc
Liu and West Bayesian Particle Filter
basic.probes
Some probes for partially-observed Markov processes
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
slice.design
Design matrices for likelihood slices.
pomp
Partially-observed Markov process object.
profile.design
Design matrices for likelihood profile calculations.
probe
Probe a partially-observed Markov process.
ricker
Ricker model with Poisson observations.
Euler-multinomial models
Euler-multinomial models
trajectory
Compute trajectories of the determinstic skeleton.
dacca
Model of cholera transmission for historic Bengal.
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
LondonYorke
Historical childhood disease incidence data
sobol
Sobol' low-discrepancy sequence
mif-methods
Methods of the "mif" class
pmcmc
The PMCMC algorithm