# NOT RUN {
library(KMsurv)
data(bmt)
bmt$icr <- bmt$d1 + bmt$d3
#compute the pseudo-observations:
pseudo = pseudoyl(time=bmt$t2, event=bmt$icr,tmax=2000)
#arrange the data - use pseudo observations for cause 2
a <- cbind(bmt,pseudo = pseudo$pseudo[[2]],id=1:nrow(bmt))
#fit a regression model for cause 2
library(geepack)
summary(fit <- geese(pseudo ~ z1 + as.factor(z8) + as.factor(group),
data = a, id=id, jack = TRUE, family=gaussian,
corstr="independence", scale.fix=FALSE))
#rearrange the output
round(cbind(mean = fit$beta,SD = sqrt(diag(fit$vbeta.ajs)),
Z = fit$beta/sqrt(diag(fit$vbeta.ajs)), PVal =
2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs))))),4)
# }
Run the code above in your browser using DataLab