# NOT RUN {
## Example 1a: average power
rslt.avgp <- pwrFDR(effect.size=0.79, n.sample=46, r.1=2000/54675, FDR=0.15)
rslt.avgp
## Example 1b: lambda-power
rslt.lpwr <- pwrFDR(effect.size=0.79, n.sample=46, r.1=2000/54675,
FDR=0.15, lambda=0.80, N.tests=54675)
rslt.lpwr
## Example 1c: sample size required for given average power
rslt.ss.avgp <- pwrFDR(effect.size=0.79, average.power=0.82,
r.1=2000/54675, FDR=0.15)
rslt.ss.avgp
## Example 1d: sample size required for given lambda-power
rslt.ss.lpwr <- pwrFDR(effect.size=0.79, L.power=0.82, lambda=0.80,
r.1=2000/54675, FDR=0.15, N.tests=54675)
rslt.ss.lpwr
## Example 1e: simulation
rslt.sim <- update(rslt.avgp, method="sim", n.sim=500, N.tests=1000)
rslt.sim
## Example 2: methods for adding, subtracting, multiplying, dividing, exp, log,
## logit and inverse logit
rslt.avgp - rslt.sim
logit(rslt.avgp) ## etc
## Example 3: Compare the asymptotic distribution of S/M with kernel
## density estimate from simulated data
pdf <- with(detail(rslt.sim)$reps, density(S/M1))
med <- with(detail(rslt.sim)$reps, median(S/M1))
avg <- rslt.sim$average.power
sd <- rslt.sim$v.SoM.emp^0.5
rng.x <- range(pdf$x)
rng.y <- range(c(pdf$y, dnorm(pdf$x, mean=avg, sd=sd)))
plot(rng.x, rng.y, xlab="u", ylab="PDF for S/M", type="n")
with(pdf, lines(x, y))
lines(rep(rslt.sim$average.power, 2), rng.y, lty=2)
lines(pdf$x, dnorm(pdf$x, mean=avg, sd=sd), lty=3)
# }
Run the code above in your browser using DataLab