rEmpiricalMahalanobis(n,N,d,...,sorted=FALSE,pow=1,robust=TRUE)
pEmpiricalMahalanobis(q,N,d,...,pow=1,replicates=100,resample=FALSE,robust=TRUE)
qEmpiricalMahalanobis(p,N,d,...,pow=1,replicates=100,resample=FALSE,robust=TRUE)
rMaxMahalanobis(n,N,d,...,pow=1,robust=TRUE)
pMaxMahalanobis(q,N,d,...,pow=1,replicates=998,resample=FALSE,robust=TRUE)
qMaxMahalanobis(p,N,d,...,pow=1,replicates=998,resample=FALSE,robust=TRUE)
rPortionMahalanobis(n,N,d,cut,...,pow=1,robust=TRUE)
pPortionMahalanobis(q,N,d,cut,...,replicates=1000,resample=FALSE,pow=1,robust=TRUE)
qPortionMahalanobis(p,N,d,cut,...,replicates=1000,resample=FALSE,pow=1,robust=TRUE)
pQuantileMahalanobis(q,N,d,p,...,replicates=1000,resample=FALSE,ulimit=TRUE,pow=1,robust=TRUE)
pQuantileMahalanobis
)MahalanobisDist
robustnessInCompositions
) specifiying how the center
and covariance
matrix are estimated,if not given.rEmpiricalMahalanobis
if no sorted argument is given. Please be
advised that this is not a fixed distribution in a mathematical sense,
but an implementation dependent distribution incorporating the
performance of underlying robust spread estimator. As long as no
sorted argument is given pEmpiricalMahalanobis
and
qEmpiricalMahalanobis
represent the distribution function and
the quantile function of a randomly picked element of this
vector.
If a sorted attribute is given, it specifies a transformation is
applied to each of the vector prior to processing. Three important
special cases
are provided by seperate functions. The MaxMahalanobis functions
correspond to picking only the larges value. The PortionMahalanobis
functions correspond to reporting the portion of Mahalanobis distances
over a cutoff. The QuantileMahalanobis distribution correponds to the
distribution of the p-quantile of the dataset.
The Monte-Carlo-Simulations of these
distributions are rather slow, since for each datum we need to
simulate a whole dataset and to apply a robust covariance estimator
to it, which typically itself involves
Monte-Carlo-Algorithms. Therefore each type of simulations is only
done the first time needed and stored for later use in the
environment gsi.pStore
. With the resampling argument a
resampling of the cashed dataset can be forced.dist
, OutlierClassifier1
rEmpiricalMahalanobis(10,25,2,sorted=TRUE,pow=1,robust=TRUE)
pEmpiricalMahalanobis(qchisq(0.95,df=10),11,1,pow=2,replicates=1000)
(xx<-pMaxMahalanobis(qchisq(0.95,df=10),11,1,pow=2))
qEmpiricalMahalanobis(0.95,11,2)
rMaxMahalanobis(10,25,4)
qMaxMahalanobis(xx,11,1)
Run the code above in your browser using DataLab