Last chance! 50% off unlimited learning
Sale ends in
df
degrees of freedom and optional non-centrality parameter
ncp
.dchisq(x, df, ncp = 0, log = FALSE)
pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp = 0)
length(n) > 1
, the length
is taken to be the number required.dchisq
gives the density, pchisq
gives the distribution
function, qchisq
gives the quantile function, and rchisq
generates random deviates. Invalid arguments will result in return value NaN
, with a warning.
The length of the result is determined by n
for
rchisq
, and is the maximum of the lengths of the
numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the
length of the result. Only the first elements of the logical
arguments are used.
The non-central dchisq
and rchisq
are computed as a
Poisson mixture central of chi-squares (Johnson et al, 1995, p.436).
The non-central pchisq
is for ncp < 80
computed from
the Poisson mixture of central chi-squares and for larger ncp
via a C translation of
Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared distribution function. Appl.Statist., 41 478--482.
which computes the lower tail only (so the upper tail suffers from cancellation and a warning will be given when this is likely to be significant).
The non-central qchisq
is based on inversion of pchisq
.
df
$= n \ge 0$
degrees of freedom has density
The non-central chi-squared distribution with df
$= n$
degrees of freedom and non-centrality parameter ncp
$= \lambda$ has density
Note that the degrees of freedom df
$= n$, can be
non-integer, and also $n = 0$ which is relevant for
non-centrality $\lambda > 0$,
see Johnson et al (1995, chapter 29).
In that (noncentral, zero df) case, the distribution is a mixture of a
point mass at $x = 0$ (of size pchisq(0, df=0, ncp=ncp)
and
a continuous part, and dchisq()
is not a density with
respect to that mixture measure but rather the limit of the density
for $df \to 0$.
Note that ncp
values larger than about 1e5 may give inaccurate
results with many warnings for pchisq
and qchisq
.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, chapters 18 (volume 1) and 29 (volume 2). Wiley, New York.
A central chi-squared distribution with $n$ degrees of freedom
is the same as a Gamma distribution with shape
$\alpha =
n/2$ and scale
$\sigma = 2$. Hence, see
dgamma
for the Gamma distribution.
require(graphics)
dchisq(1, df = 1:3)
pchisq(1, df = 3)
pchisq(1, df = 3, ncp = 0:4) # includes the above
x <- 1:10
## Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df = 2), dexp(x, 1/2))
all.equal(pchisq(x, df = 2), pexp(x, 1/2))
## non-central RNG -- df = 0 with ncp > 0: Z0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics::stem(Z0)
## visual testing
## do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar = c(3,3,1,1)+.1, mgp = c(1.5,.6,0),
oma = c(0,0,3,0))
for(df in 2^(4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n, df = df, ncp = L), df = df, ncp = L)),
ylab = "pchisq(rchisq(.),.)", pch = ".")
mtext(paste("df = ", formatC(df, digits = 4)), line = -2, adj = 0.05)
abline(0, 1, col = 2)
}
mtext(expression("P-P plots : Noncentral "*
chi^2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer = TRUE)
par(op)
## "analytical" test
lam <- seq(0, 100, by = .25)
p00 <- pchisq(0, df = 0, ncp = lam)
p.0 <- pchisq(1e-300, df = 0, ncp = lam)
stopifnot(all.equal(p00, exp(-lam/2)),
all.equal(p.0, exp(-lam/2)))
Run the code above in your browser using DataLab