# NOT RUN {
set.seed(50)
# linear model
dat <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=gaussian())
# logistic model
dat2 <- data.frame(y=rbinom(50, 1,0.5), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat2, q=2, family=binomial())
# poisson model
dat3 <- data.frame(y=rpois(50, .5), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat3, q=2, family=poisson())
# weighted model
N=5000
dat4 <- data.frame(y=runif(N), x1=runif(N), x2=runif(N), z=runif(N))
dat4$w=runif(N)*2
qdata = quantize(dat4, expnms = c("x1", "x2"))$data
(qgcfit <- qgcomp.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4,
family=gaussian(), weights=w))
qgcfit$fit
glm(y ~ z + x1 + x2, data = qdata, weights=w)
# }
Run the code above in your browser using DataLab