#### VISUALIZE CORRELATION MATRIX ###
eta=matrix(rnorm(200*5),ncol=5)
lam=matrix(0,nrow=100,ncol=5)
for (i in 1:5) lam[(20*i-19):(20*i),i]=rnorm(20,0.7,0.3)
eps=matrix(rnorm(200*100),ncol=100)
Y=eta%*%t(lam)+eps
# Run qgraph:
qgraph.efa(cor(Y),5,vsize=c(1,10))
# Show crossloadings:
qgraph.efa(cor(Y),5,crossloadings=T,cut=0,vsize=c(1,10))
# Wider plot with larger nodes:
Q=qgraph.efa(cor(Y),5,vsize=c(2,10),width=17)
# With measurement model:
groups=list(1:20,21:40,41:60,61:80,81:100)
names(groups)=LETTERS[1:5]
qgraph.efa(cor(Y),5,vsize=c(2,10),,Q,groups=groups,legend=FALSE)
# Circulair layout:
qgraph.efa(cor(Y),5,vsize=c(2,10),layout="circle",groups=groups,
legend=FALSE)
Run the code above in your browser using DataLab